support@kaust.edu.sa
+966 (12) 808-3463
  • العربية
logo-black
  • Home
  • People
    • Current
    • Alumni
    • Group photos 
  • Research
  • Publications
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • Journal covers
  • Internship
  • News
  • KPV-LAB in the press
  • Join us
  • Contact us
breadcrumb-bg

Mechanical Reliability of Fullerene/Tin Oxide Interfaces in Monolithic Perovskite/Silicon Tandem Cells

  1. Home
  2. Publications
  • Clear filters

Mechanical Reliability of Fullerene/Tin Oxide Interfaces in Monolithic Perovskite/Silicon Tandem Cells

by Michele De Bastiani, Giovanni Armaroli, Rawan Jalmood, Laura Ferlauto, Xiaole Li, Ran Tao, George T. Harrison, Mathan K. Eswaran, Randi Azmi, Maxime Babics, Anand S. Subbiah, Erkan Aydin, Thomas G. Allen, Craig Combe, Tobias Cramer, Derya Baran, Udo Schwingenschlögl, Gilles Lubineau, Daniela Cavalcoli, Stefaan De Wolf
Letter Year: 2022 DOI: https://doi.org/10.1021/acsenergylett.1c02148

Bibliography

De Bastiani, M., Armaroli, G., Jalmood, R., Ferlauto, L., Li, X., Tao, R., T. Harrison, G., K. Eswaran, M., Azmi, R., Babics, M., S. Subbiah, A., Aydin, E., G. Allen. T., Combe, C., Cramer, T., Baran, D., Schwingenschlögl, U., Lubineau, G., Cavalcoli, D., De Wolf, S.

Abstract

High-efficiency perovskite-based solar cells comprise sophisticated stacks of materials which, however, often feature different thermal expansion coefficients and are only weakly bonded at their interfaces. This may raise concerns over delamination in such devices, jeopardizing their long-term stability and commercial viability. Here, we investigate the root causes of catastrophic top-contact delamination we observed in state-of-the-art p-i-n perovskite/silicon tandem solar cells. By combining macroscopic and microscopic analyses, we identify the interface between the fullerene electron transport layer and the tin oxide buffer layer at the origin of such delamination. Specifically, we find that the perovskite morphology and its roughness play a significant role in the microscopic adhesion of the top layers, as well as the film processing conditions, particularly the deposition temperature and the sputtering power. Our findings mandate the search for new interfacial linking strategies to enable mechanically strong perovskite-based solar cells, as required for commercialization.
logo-white

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

    stefaan.dewolf@kaust.edu.sa
  • 4700 King Abdullah University of Science and Technology

    Al-Kindi (building 5), Level 3 Seaside, Right side

    Thuwal 23955-6900

    Kingdom of Saudi Arabia

Tweets by KAUST_KPVLab

© King Abdullah University of Science and Technology. All rights reserved

Privacy Policy
Terms of Use
Loading...